Энергия, принесенная ветром

Желание иметь автономный источник электроснабжения возникает у тех, кому постоянно или периодически приходится жить в местах, удаленных от линий электропередач. Комфортабельность такого жилья повышается во много раз, когда комнаты освещаются не керосиновыми лампами, а электричеством, можно посмотреть телевизор, включить магнитофон или радиоприем­ник. Все это осуществимо благодаря одному из автономных источников, каким является ветроэлектростанция — ВЭС. Даже совсем небольшая по мощности — несколько десятков ватт — ВЭС переносит нас в удивительный мир XX века. Плюсы ее очевидны — бесшумная работа, в отличие от бензоэлектроагрегатов с их надоедливым шумом, самое же главное — совершенно бесплатная электроэнергия. Присущи, конечно, и существенные недостатки. Это зависимость от наличия и скорости ветра, как следствие — нестабильность напряжения получаемого электротока, ограниченная мощность, невозможность получения непосредствен­но от генератора стандартного напряжения 220 В частотой 50 Гц, каким мы привыкли пользоваться в обиходе.
Тем не менее постройка ВЭС — дело стоящее. Конструктор и строитель испытают удовлетворение и радость при виде разбегающихся пауков из темных углов комнат, освещенных вдруг ярким светом электрических лампочек.
ВЭС — самые экологически чистые источники электроэнергии. От них нет шума, нет копоти, нет опасности заражения радиоактивностью, нет затопления огромных пойменных земель, не надо сжигать ценнейшее сырье — уголь, газ, нефтепродукты.

О выборе вида тока
Имеется в виду, каким током пользоваться, переменным или постоянным. При решении этого вопроса большинство факторов говорит в пользу постоянного тока. Генераторы постоянного тока небольшой мощности более распространены, чем генераторы переменного тока, значит, их легче приобрести. Применение аккумуляторов, которые заряжаются постоянным током, позволяет избежать зависимости от капризов природы — наличия ветра, величину напряжения проще регулировать при постоянном токе. Конечно, большой недостаток — невозможность трансформации, то есть понижения или повышения напряжения трансформаторами, но с этим приходится мириться. Да и неудобство такое не всегда бывает. Кроме того, выход из положения есть. Построив преобразователь постоянного тока в переменный с частотой 50 Гц, можно затем повысить напряжение до необходимой величины. Но это тема другого разговора. Для освещения можно применять низковольтные, например автомобильные, лампочки на 6, 12 или 24 Вт, в зависимости от действующего напряжения вашей ВЭС. Практически все переносные телевизоры, магнитофоны, приемники имеют схемную возможность запитки от источников 9 или 12 В. Есть электробритвы, работающие от 12 В.
И даже если имея генератор переменного тока, то от него все равно мы не сможем получить стандартное напряжение, т.к. эти генераторы обычно высокооборотные, требующие строго постоянные определенные (в зависимости от типа генератора) числа оборотов. Это требование в любительских условиях практически невыполнимо. Тем не менее генераторы переменного тока можно использовать для постройки ВЭС, дополнив их выпрямителями.
Кстати, современные автомобильные генераторы являются трехфазными генераторами переменного тока со встроенными выпрямительными мостами.
Весьма существенное значение имеет то, что генераторы постоянного тока могут работать в большом диапазоне скоростей оборотов. В этом случае просто изменяется мощность. То есть, если в паспорте какого-либо генератора постоянного тока указано номинальное (рабочее) число оборотов, например, 5000 об/мин, то это не означает, что при других скоростях он не будет работать. Практически он начнет вырабатывать электрический ток сразу, как только его ротор получит вращение. Примерная характеристика зависимости напряжения от числа оборотов генератора показана на рис.1.
график
Рис. 1. Примерная характеристика зависимости напряжения холостого хода (без нагрузки) генератора от числа оборотов его ротора (якоря).

Такое напряжение получается без нагрузки и без внешнего регулятора напряжения. Из графика видно, что уже при 800 об/мин напряжение достигает 12 В. Но подключать нагрузку при этих оборотах ротора генератора еще нельзя, так как напряжение сразу упадет ниже 12 В. С повышением числа оборотов напряжение растет и при п=1200 об/мин можно уже нагружать генератор. Для поддержания напряжения на нужном уровне, например 12 В, служат специальные регуляторы напряжения. Пунктиром показан уровень напряжения, получаемого в результате совместной работы генератора с регулятором. В результате мы видим, что генератор может работать в интервале от 1200 до 13000 об/мин. (Большее число оборотов воздушный винт развить просто не сможет.)
Все это сказано для примера. Различные типы генераторов имеют весьма разнообразные характеристики.

О мощности ВЭС и выборе генератора
Очень заманчиво, конечно, построить ВЭС мощностью киловатт на 30—50 и запитать от нее даже батареи отопления. Но сложность постройки возрастает с повышением мощности не линейно, даже не квадратично, а по гиперболическому закону, что мы и увидим из нижеследующего.
Вес генератора — один из самых главных факторов, с которым придется считаться при постройке ВЭС. Нам ведь надо устанавливать его на довольно высокой мачте. Чем тяжелее генератор, тем прочнее и сложнее должна быть мачта. Для примера рассмотрим несколько типов генераторов. Генератор постоянного тока Г-20, мощностью 0,22 кВт, вырабатывающий ток до 18 А напряжением 12 В, весит 12,5 кг. Генератор МП-542-1/2 мощностью 3,6 кВт. весит 235 кг. Генератор В-48/30-6 мощностью 45 кВт весит уже 2400 кг.
Согласитесь, что вес в 2400 кг — трудно преодолимое препятствие для любительской постройки. Чтобы поднять такой вес на высоту 6—8 метров, нужна не просто мачта, а сложное инженерное сооружение типа старинных ветряных мельниц, да и сам подъем потребует хотя бы автокрана. Можно, конечно, не поднимать генератор на высоту, установив его в основании мачтового сооружения. В этом случае потребуется сложная трансмиссионная передача от воздушного винта к генератору.Кроме этого, чем мощнее генератор, тем больше и сложнее должен быть его привод - воздушный винт или ветровое колесо «ветряк».
Поэтому наиболее просто построить ВЭС мощностью не более 0,5 кВт.
Немаловажное значение имеет при выборе генератора его номинальное число оборотов. Генераторы с n=300—800 об/мин можно назвать тихоходными или низкооборотными. Такие генераторы уже при 200—300 об/мин начинают давать электрический ток, обеспечивающий зарядку аккумуляторов и поддержание напряжения в сети на необходимом уровне. Генераторы с рабочими оборотами выше 1000 — высокооборотные или быстроходные. Низкооборотные генераторы позволяют значительно упростить кинематическую схему ВЭС, насадив непосредственно на вал генератора воздушный винт.
Высокооборотные генераторы потребуют применения редуктора для повышения скорости вращения, так как воздушный винт под нагрузкой при умеренном ветре развивает 250—300 об/мин. Можно попытаться приобрести подходящий генератор на машинно-тракторных станциях, в автохозяйствах. Там всегда есть выработавшие свой ресурс и списанные генераторы от тракторов, автомобилей и т.д.
Как правило, генераторы от старых типов автомобилей более низкооборотные, чем от современных. Так, генераторы типа ГБФ-4105, применявшиеся в автомобилях ГАЗ, работают при номинальных оборотах 1800 об/мин. Это, конечно, тоже довольно высокооборотный генератор, но по сравнению с генератором Г-221, применяющимся в настоящее время в легковых автомобилях ВАЗ и работающих на 6—8 тысяч оборотов в минуту, довольно малооборотны. Списанный генератор после соответствующего ремонта вполне подойдет для постройки ВЭС.
Не следует также забывать о том, что практически все коллекторные машины постоянного тока обратимы, т.е. двигатель постоянного тока может работать генератором. В зависимости от типа приобретенного генератора и его рабочего напряжения — 6, 12 или 24 В приобретаются остальные изделия — лампочки накаливания, аккумуляторы, регуляторы напряжения и другое. Об этом будет сказано ниже. Мы же для примера рассмотрим постройку ВЭС, опираясь на конкретный генератор Г-221, применяемый в автомобилях ВАЗ, который наиболее распространен. Достать его всего проще — пойти в магазин автозапчастей и купить. Его технические характеристики:
Номинальное напряжение — 12 В
Направление вращения — правое
Максимальная частота вращения ротора —13000 об/мин
Максимальная сила тока при 14 В и 5000 об/мин — 42 А
Номинальная мощность — 590 Вт.
Воздушный винт (ветроколесо, ветряк)

Принцип работы воздушного винта
Эту главу включена для того, чтобы тот, кто впервые приступает к постройке воздушного винта, делал это вполне осознанно и целенаправленно.
Для пояснения принципа работы воздушного винта, работающего в качестве двигателя (в отличие от самолетного, где винт является движителем), рассмотрим рис. 2.
теория
Плоскость АА' установлена под углом ф к плоскости вращения Y, называемом углом установки лопасти. Ось X — ось вращения воздушного винта. На плоскость винта АА' набегает (дует) воздушный поток (ветер) V под углом а. Воздушный поток отражается плоскостью в направлении V под углом а' = а (угол отражения равен углу падения). В результате отражения воздушного потока возникает реактивная сила F. Составляющая этой силы F' направлена вдоль оси вращения X, вторая — F" направлена по плоскости вращения Y. Вот эта сила и является той, которая создает вращающий момент. Под действием силы F' плоскость АА' начинает двигаться вправо, встречая при этом сопротивление воздуха V", которое создает противодействующую силу Р. Эта сила пропорциональна линейной скороста плоскости АА и площади проекции S плоскости АА' на плоскость ВВ', расположенной перпендикулярно плоскости вращения Y, и параллельно продольной оси винта (на чертеже это точка пересечения О осей X и Y). После набора определенного числа оборотов сила Р будет равна силе Р, и винт будет вращаться с постоянной скоростью при данной скорости ветра V. Наступит динамическое равновесие. При изменении скорости воздушного потока V изменится и величина силы F1. Это приведет к изменению скорости вращения воздушного винта. Сильнее ветер — быстрее вращение.
Мы рассмотрели поведение лопасти воздушного винта на холостом ходу, без нагрузки. Стоит только передать вращение винта генератору, как появится момент сопротивления моменту вращения. Число оборотов винта упадет до нового равновесия.
Из рис.2 видно, что возникающая бесполезная сила F" гораздо больше нужной нам силы F1. Кажется, стоит увеличить угол установки Y, как это показано на рис.3, и полезная сила F', а значит, и крутящий момент увеличатся. Да, это так и есть. На рис.3 это отчетливо видно. И совсем, казалось бы, идеально установить угол ф = 45°. Как видно из рис.4, в этом случае отраженный воздушный поток V направлен в плоскости вращения, а реактивная сила F направлена в нужном нам направлении.
чертеж
Рис. 3
Но! В этих случаях сразу возникают два весьма существенных «но». Первое — резко увеличивается плоскость проекции винта, следовательно, и сила противодействия P.
S" » S' » S;
Р"> Р'> Р.
завыхрения
Рис. 4

Второе — возникают турбулентные завихрения за плоскостью, как это показано на рис.4, создается зона разряжения воздуха Q1 и зона повышенного давления Q. Все эти явления вызывают появление дополнительных противодействующих сил, которые не только начисто «съедают» полученный полезный прирост силы F', но и ухудшают работу винта в целом. Винт начинает «месить» воздух, работать неравномерно, рывками, скорость вращения падает, момент вращения уменьшается.
Путем теоретических расчетов, экспериментальных работ и многолетней практики определено, что наилучший угол установки лопасти ф = 11 —12°,
как это показано на рис. 5.
лопасти
Рис. 5. Примерный профиль лопастей воздушного винта

В приведенных выше рассуждениях не учтены многие факторы: тут и влияние шероховатости поверхности винта,сопротивление трения оси вращения винта и другое.

Основные геометрические характеристики воздушного винта
Воздушный винт (ветроколесо) состоит из двух и более совершенно одинаковых лопастей, закрепленных на ступице неподвижно или подвижно относительно продольных осей лопастей. В первом случае винт может быть изготовлен из одного куска дерева или иметь возможность поворота лопастей относительно продольной оси для установки угла ф с последующим жестким креплением. Во втором случае лопасти могут изменять этот угол при помощи автоматических регуляторов для поддержания (стабилизации) оборотов на заданном уровне.
а) Диаметр винта D — диаметр окружности, описываемой концами лопастей.
б) Шаг винта Н — расстояние, пройденное винтом за один оборот при условном ввинчивании его в воздух, как в твердое тело.

H = ПDtgф(Пи Де тангенс фи);

в) Угол установки лопасти ф был подробно рассмотрен выше.
г) Покрытие лопасти винта ^Sл(дельта площади лопасти)— отношение площади проекции одной лопасти на плоскость вращения к площади диска диаметром D:
формулы
е) Форма лопасти винт в плане.

Примеры форм показаны на рис.6. Форма может быть прямоугольная, «самолетная», трапецеидальная прямая, трапецеидальная обратная. Наиболее простая в изготовлении — прямоугольная. Наиболее сложная «самолетная». Преимуществ «самолетная» форма не имеет, кроме лучшего эстетического восприятия. Трапецеидальная прямая крепится в ступице большим основанием. Такие лопасти механически самые прочные.
формы лопастей Рис. 6. Формы лопастей воздушных винтов: а—прямоугольная; б —«самолетная»; в —трапецеидальная прямая;г — трапецеидальная обратная

Трапецеидальная обратная крепится к ступице меньшим основанием. Такие лопасти изготавливаются обычно из металла. Из дерева их делать не рекомендуется, так как механически они очень не прочны и легко лопаются при сильном ветре. Но крутящий момент у них выше. Эти лопасти применимы при числе их больше 8.

ж) Число лопастей N. Как уже упоминалось, минимальное количество N = 2; максимальное может быть N = 16. Увеличение числа лопастей увеличивает крутящий момент. Но в изготовлении такие винты, конечно, гораздо сложнее. Винту с большим числом лопастей больше подходит название «ветроколесо». Примеры на рис.7.
конструкция винтов
Рис. 7. Примерная конструкция винтов: а — двухлопастный; б — трехлопастный; в — восьмилопастный

Тем не менее, несмотря на сложность изготовления, выгоднее увеличивать крутящий момент не за счет увеличения покрытия лопасти ^Sл, а за счет увеличения количества лопастей N. Увеличение обоих параметров, ^Sл и N, приводит к увеличению покрытия винта ^Se. Но в случае увеличения ^Sл возрастает аэродинамическое сопротивление, уменьшающее крутящий момент.
з) Профиль лопасти. Для уменьшения величины суммарных сил противодействия Р обратной стороне лопасти винта придается форма (рис.5), позволяющая максимально уменьшить аэродинамическое сопротивление потока воздуха в плоскости вращения. Для винтов применяются специальные «винтовые» профили. Эти профили получены в результате сложных математических расчетов и аэродинамических испытаний. Форм профилей с высокими аэродинамическими качествами несколько. В настоящее время наиболее применимы профили ВС-2 или РАФ-6 для деревянных винтов, и Clark-У для металлических. О расчете профилей можно узнать в специальной литературе.
Строгое выполнение профилей — дело сложное и кропотливое. Для нашего случая особой необходимости в этом нет. Все-таки мы не летательный аппарат строим. Вполне достаточно придать приближенную форму лопастям нашего винта.
и) Направление вращения винта — может быть правое и левое. Выбирается в зависимости от выбранного генератора. Для генератора Г-221 направление вращения винта должно быть правое, по часовой стрелке, если глядеть на винт с лицевой стороны.
Правое или левое вращение винта получается при изготовлении, устанавливая угол ф вершиной вправо или влево, если смотреть на лопасть со стороны конца. Изменить направление вращения простым поворотом лопастей (в случае, если лопасти имеют возможность поворота вдоль продольной оси) нельзя, так как сразу резко ухудшатся аэродинамические качества.


Если заинтересовало, читайте продолжение...

На главную Dlya-mastera:
Чертежи и описания самодельных конструкций и изделий

Каталог webplus.info

Сайт управляется системой uCoz